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Power Sum Method and the Approximative Solution 
of Algebraic Equations 

By Paul Turin 

To D. H. Lehmer on the occasion of his 70th birthday 

Abstract. A universal algorithm is given for computing a root of an arbitrary polynomial 

with complex coefficients in a number of operations dependent only on the order n and 

relative error e. This paper is a brief English exposition of the author's earlier "Algebrai 

egyenletek kozelito megoldas'aro'l," Vol. XVIII of the Communications of the III Class of 

the Hungarian Academy of Sciences (1968), pp. 223-235. 

1. This paper was partly prompted by the thought-provoking paper of Garrett 
Birkhoff entitled "Current trends in algebra" in the Amer. Math. Monthly's Aug.-Sept. 
1973 issue. Without entering into a discussion of the paper as a whole, of its merits, 
or of the wide scope of its presentation, I would like to emphasize one point only. 
Sturm's and related theorems and more generally the numerical treatment of algebraic 
equations were still the subject of books of algebra per definitionem in 1928, in 0. 
Haupt's Algebra and partly even in van der Waerden's book. But then, all of a 
sudden, King Lear's fate reached it; his daughters threw him out of his kingdom of 

algebra entirely; afterwards, in order not to be considered old fashioned, no 
respectable algebraist (except perhaps Krull) felt the need to behave even a bit like 
Cordelia. It seemed for a long time that the exile would be permanent. But as often 
happens new points of view emerged and resulted in a spiral-like escalation of the 
subject. So the exile now seems to be over. One can suspect that in time a palace 
or even a small county in the realm of algebra will be given back to him. Birkhoff, 
after mentioning some books of the new numerical algebra states,"... every forward- 
looking young algebraist should at least be cognizant of their contents." Such a 
sentence should heal all the wounds of Lear's soul caused by Regan and Goneril. 

2. What I would actually like to discuss are the following lines of Birkhoff's 

paper (p. 776). "There are many other interesting new areas of research in (real 
and complex) numerical algebra. I shall just mention three of the most important; 
references to activity in them may be found in many review journals: 

(a) Finding the roots of polynomial equations of degrees up to 100. 
(b) "Unconstrained" minimization of functions of many variables. 
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(c) Linear programming and other techniques for finding minima of functions 

subjected to "constraints" by equations and inequalities." 
Our discussion will deal exclusively with (a). 

First of all it is puzzling in what sense (a) can be considered as a "new area of 

research" after D. Bernoulli. There are several possible interpretations. Keeping to 

one possible interpretation the problem can be considered as solved by the paper "A 

machine method for solving polynomial equations" by D. H. Lehmer published in 

J. Assoc. Comput. Mach. in 1961. To consider perhaps the widest theoretical inter- 

pretation one needs some preliminaries. By elementary operations on complex num- 

bers we mean 

(2.1) 1. Addition, subtraction, multiplication, division, 

II. The positive value of kth root of a positive number. 

Let an algorithm Hl be a finite sequence of these elementary operations; the length 

of the algorithm Hl is the number of elementary operations in Hl. Let us consider 

the algebraic equation 

(2.2) aO + alz + * + anzn = o 

with arbitrary complex coefficients satisfying the normalization 

(2.3) min(lao1, Ian)= 1, 

with its zeros being z Z2 *, Zn, where 

(2.4) IZ1- IZ21? - IZnI. 

We shall say that the equation (2.2)-(2.3) "'can be approximately completely 

solved" if for an arbitrarily small positive c one can devise a method consisting of 

n algorithms fl , flr *.. Hr* which applied to the coefficients in (2.2) give 

values z*, z2, *,z Z, respectively, so that 

(2.5) I(z1/z7) - I I <e, j = 1, 2, ,n. 

In principle these algorithms can depend not only on n and e but also on the 

coefficients, and hence their lengths can be unbounded if e is fixed and the 

coefficients av are varying. If this is the case, the method is theoretically as well as 

practically less valuable. We say further that the equation (2.2)-(2.3) "can be 

approximately solved" if for an arbitrarily small positive e one can devise one 

algorithm Hl ** which applied to the coefficients in (2.2) gives a complex number oa 

so that for some index j we have 

(2.6) I(z /0) - 11? e. 

Again H`** can depend in principle on the coefficients and its length can be un- 

bounded in the previous sense. The following further requirement on the Hl's is 

important mainly for practical reasons. The equation to be solved is often given as a 
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characteristic equation of a matrix A. Hence, the further requirement is reasonable 
that the algorithms should be "elegantly rephrasable" (and reasonably programmable) 
for eigenvalues of matrices too. This requirement we can call requirement G. 
Theoretically as well as practically important is the problem of whether or not the 
H-algorithms can be devised so that they do not depend on the coefficients av and 
thus so that their lengths depend only on n and c (even if requirement G is not 
fulfilled). The obvious practical significance of a universal solution of this problem 
is that one obtains a universal bound on machine time depending only on n and c 
for all equations (2.2)-(2.3). The theoretical significance of the problem will be clear 
if we would suppose for a moment that-contrary to Ruffini-Abel's theorem-the 
general equation (2.2)-(2.3) is algebraically solvable for all n's. This would mean that 
one could devise an algorithm Hl*** with length depending only upon n which 
applied to all equations (2.2)-(2.3) would give the exact value of a root of the equa- 
tion. So a universal solution of (2.6) or (2.5) would mean briefly speaking that the 
analogue of Ruffini-Abel's theorem for the approximative solution of algebraic equations 
does not hold. 

3. Whether or not the general equation (2.2)-(2.3) can be approximately com- 
pletely solved in the sense (2.5) so that the H7-algorithms do not depend on the 
coefficients is according to the best of knowledge unknown. The matter is different 
however if we turn to approximate solvability in the sense (2.6). In my paper on 
approximative solution of algebraic equations ("Algebrai egyenletek k-zelit6 
megoldasar6l," Vol. XVIII of the Communications of the III Class of the Hungarian 

Academy of Sciences (1968), pp. 223-235, in Hungarian) I not only proved the 
existence of the required Hl** algorithm with a length depending only on n and 
c but described explicitly such algorithms which moreover also satisfy the G-require- 
ment. Since my original paper is not easily accessible I shall describe here one of my 
algorithms in extenso and give (implicitly) its form for eigenvalues of matrices, in 
order not to make the paper too long. I remark also that there is an analogous theory 
for more general equations where the elements of the n x n matrix are polynomials 
in X of lth degree at most. 

4. I shall not enter here into the details of the proofs. Their basic idea con- 
sists in reducing them to some extremal problems concerning power sums of complex 
numbers which can be considered as a generalization of the theory of diophantine 
approximations. Such ideas have also proved to be very useful in function theory, 
in the theory of ordinary differential equations and in the treatment of various 
questions of the analytic number theory.* The problems relevant here refer to the 
determination or estimation of 

*See a forthcoming English edition of my book Eine neue Methode in Analysis und deren 
Anwendungen in the Interscience Tracts series (with which I have been threatening the world for 
15 years in various lectures and papers). 
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(4.1) min max C + V +. + I 
ti v= 1 ,2, - * * ,n 

2n 

when the t-variables are normalized 

(4.2) (a) by min J = 1 

resp. 

(4.3) (b) by max 1tfl=. 

Denoting the respective minimax by Mn resp. Mn, I found that 

(4.4) Mn 

(equality "essentially" only for the system 

(4.5) = e27ij/(n 1) = 1, 2, . n) 

and 

(4.6) Mn > log 2/log(n + 1), 

which was improved by Atkinson to** 

(4.7) Mn > i/6. 

A further important inequality of this type was found by Buchholtz,who proved under 
the normalization (4.3) the inequality 

(4.8) max n-?1/vjt + ... + tv l/lv > 1/5. 
v=1,2,- - *,n 

5. Before turning to the discussion of the algorithm I shall make two remarks. 
First,that owing to the identity 

(5.1) ?2(c + d) + J((c - d)/2)2 = max(c, d) 

(with c, d real, and where the square root denotes the positive value), the operation 
max(d1, d2, , dr) can be included in the domain of operations (2.1).*** 

The second remark refers to the adaptability of the algorithm to machines. Not 

being an expert in machines I could not embark on a proper estimation of the machine 
implementation; of course, it would be desirable if it were done. For the same 

reason I am sure that several details of the algorithm can be modified by a machine 
expert to make it more adaptable to a computer. A few observations on this will be 

made in Section 10. 

6. We shall need what I call the first rule. Let 

* *The best possible value instead of 1/6 is not known. 
***And also min(d1, d2, * dr). 
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(6.1) a0 + alz + * + a + anz= aoo+ a10z + ** + an0z 

and we form the so-called Graeffe transforms 

(6.2) fv(z) = aov + a1 z + - 
* * + anvzn (r =0, 1, ) 

defined by 

(6.3) fv + 1 (Z) = fv (NlZ)fv (_ N/Z) 

Furthermore, let m be an arbitrary positive integer and with the mth Graeffe trans- 
form we calculate the numbers al,1 2, I, u,n successively by the formulas 

aomUl +alm 0 

(6.4) aomu2 + almal + 2a2m (0 

aom Cn + almun-1 + + nanm = 0. 

Then we assert the 
First Rule. With the notation (2.4) and 

(6.5) M= 1/rmax * Uv 11/(v.2m) 
/v= 1,2, -n I n| 

the inequality 

(6.6) 5-1/2m < Iz /MA 1 

holds. 

7. Let A be a nonsingular n x n matrix with complex entries and X1 X2, 

* X its eigenvalues, where 

(7.1) 1X 1 1>X21* >RlXn . 

If A-' is the inverse matrix, we form by successive squarings the matrix 

(-2 defB (A-1)2m 
de 

B. 

Then we assert the 
Second Rule. With the notation (7.1) and 

N= 1/ max [- trace Bv| 
v=l1,2,-o*,n n 

the inequality 

5- 1 /2m < IVn VN < 1 

holds. 
As one can see, the formulation of the second rule is even more elegant than 

that of the first (and is also easily programmable). This already indicates that the 

requirement G will be fulfilled by our algorithms. So it will be enough to give the 

algorithm for the equation (2.2) only. 
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Because of (5.1) the operations performed in these rules belong to the domain 
in (2.1). 

8. Now the algorithm for (2.2), i.e., for (6.1), runs as follows.t 
0th Step. We apply the first rule with m = 4. The M-value in (6.5) will be de- 

noted by M(0) and we let 

,(O) d_f 0. 

First Step. We consider the twelve numbers 

4M) = t(0) + 19 M0)ei7ri/6 

If fo(4l) ) = 0 for some j we are finished. If not, we form the twelve polynomials 

(8.1) f0(#Jl) + w) ( o = 0, 1, , 11), 

rearrange them in the form (6.1) and apply the first rule with m = 4 to each. Then 
we get twelve numbers M(1 and one can determine an index p,u so that min M('0= I I 
MM . Let us abbreviate MM1l =MO1) and define 

M(1) = t(1) 
Al 

Second Step. We consider the twelve numbers 

t(2) = t(1) + 19 pl(1)ei7ri/6 j = 0, 1, ..., 11. 
20j 

1 II 

If fo(42)) = 0 for some j, we are finished. If not, we form the twelve polynomials 

(8.2) fo(02) + w) ( = 0, 1, **, 1), 

rearrange them in the form (6.1) and apply the first rule with m = 4 to each. Then 
we get twelve numbers M(2) and one can determine an index so2 

5 that 
min M(2) = M(2) . As before, we abbreviate M(2) = M(2) and define 

t(2) - t(2) 
A2 

Then the second step is finished. 
These steps can be continued and will terminate after finitely many steps only 

in a zero of fo(z). At every step we have to form twelve numbers and one 

polynomial for each, apply the first rule to each with m = 4 and thus get twelve 

new M-numbers; we then have to select from them a minimal one. One can then 

prove that the sequence t(d) is such that for each d > 2 there is a zero Z(d) of 
our equation, so that the inequality 

t Our algorithm shows some formal similarities to the previously mentioned algorithm of 
D. H. Lehmer, 1.c. (which is, as far as I can see, an unbounded one and I do not see whether or 
not the requirement G in 2. is fulfilled for it). 
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(8.3) |_- 1| <2 (2 ) 
t(d) 28 

holds. 

9. The first and second rules have, of course, analogues for 1z1 I resp. IX, l. 
Although they are not necessary for our algorithms, they are obviously of independent 
importance, theoretically as well as practically; in order to emphasize the extent to 
which the G-requirement is fulfilled by our methods, I shall write down only the 
analogue of the second rule as the 

Third Rule. Let m be an arbitrary positive integer and form by successive 
squaring the matrix A2 - C. Putting 

L = max - trace (V| 
v=l,---,n n 

the inequality 1 jX, JIL < 51/2m holds. 

10. It is clear that the length of our algorithm indeed depends only upon n and 
e; also that choosing the parameters of the algorithm properly (regular 12-gon, etc.), 
it can be adapted to various optimizations. I have chosen the regular 12-gon only to 
make rearrangements in (8.1), (8.2) easier. As (8.3) shows, in order to attain 7% 
relative exactitude, d = 3 can be chosen, i.e., three steps are already enough, inde- 
pendent of n ! This indicates intuitively that in performing the algorithm the machine 
time depends not so much on n but more on the prescribed relative exactitude 
required. 

One can recognize that basically it deals with a reorganization of Graeffe's 
method which however is an essential one. It is rather remarkable since for the 
original form 

(a) it is false without requiring 1z1 I > IZ2 1; 

(b) no algorithms are known at present for deciding whether or not 1zl I > IZ2 1 

is fulfilled; 
(c) if Iz1 I > Iz2 1 is fulfilled, then the algorithm is still "unbounded". 
To be a bit personal, I often argued with numerical analysts on the 

practicality of my algorithm. Their main objection was-which I could never believe 
but I did not have the means to object-that very large numbers necessarily occur, 
which soon "overflow". So after a while I considered the whole matter as a nice 
pure mathematical theorem with some applied flavour. Now on the second page of 
the very interesting paper of G. E. Collins entitled "Computer algebra of polynomials 
and rational functions" in the same issue of the Amer. Math. Monthly one can read 
the following lines: "...Throughout we make provisions for polynomials with 
arbitrarily large coefficients. This is natural since computers are now fast enough 
that any restrictions imposed by the word length of the computer are artificial and 
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unnecessary. It is also important since only the most trivial algebraic operations on 
polynomials can be performed without generating integer coefficients which are 100 
or more decimal digits in length. Frequently the final result will have coefficients of 
modest size, but obtaining this result requires the generation of polynomials with very 
much larger coefficients..." This is exactly the present situation too. The proper 
conclusions are left for the reader to draw. 
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